REVIEW

Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases [version 1; peer review: 4 approved]

Christian Bär, Maria A. Blasco

Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain

First published: 20 Jan 2016, 5(F1000 Faculty Rev):89
https://doi.org/10.12688/f1000research.7020.1

Abstract
Telomeres, the protective ends of linear chromosomes, shorten throughout an individual's lifetime. Telomere shortening is a hallmark of molecular aging and is associated with premature appearance of diseases associated with aging. Here, we discuss the role of telomere shortening as a direct cause for aging and age-related diseases. In particular, we draw attention to the fact that telomere length influences longevity. Furthermore, we discuss intrinsic and environmental factors that can impact on human telomere erosion. Finally, we highlight recent advances in telomerase-based therapeutic strategies for the treatment of diseases associated with extremely short telomeres owing to mutations in telomerase, as well as age-related diseases, and ultimately aging itself.

Keywords
Telomeres, Telomerase, Aging, telomere length, short telomeres

Open Peer Review

Approval Status

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>version 1</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>20 Jan 2016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Jerry W Shay, University of Texas Southwestern Medical Center, Dallas, USA
2. Fabrizio d’Adda di Fagagna, IFOM - FIRC Institute of Molecular Oncology Foundation, Milan, Italy
3. Lucio Comai, University of Southern California, Los Angeles, USA
4. F. Bradley Johnson, University of Pennsylvania, Philadelphia, USA

Any comments on the article can be found at the end of the article.
Telomere structure, function and maintenance

Telomeres are heterochromatic structures located at the ends of linear chromosomes formed by DNA tandem repeats bound by specialized protein complexes, which exert a protective function. A proper telomere structure prevents chromosome ends from being recognized as DNA strand breaks, thus preventing illegitimate homologous recombination between telomeres as well as chromosome end-to-end fusions\(^1\). In vertebrates, telomeric DNA is composed of up to thousands of TTAGGG hexanucleotide repeats that are bound by a six-protein complex known as shelterin, which encompasses TRF1, TRF2, POT1, TIN2, TPP1, and RAP1\(^2\). TRF1 and TRF2 directly bind double-stranded telomeric repeats, whereas POT1 recognizes the single-stranded telomeric G-rich 3’ overhang. TIN2 binds to TRF1 and TRF2 through distinct domains and also recruits a TPP1-POT1 heterodimer, thus bridging different shelterins to organize the telomere cap\(^2\). Finally, RAP1 is recruited to telomeres by TRF2, but can also bind throughout chromosome arms to regulate transcription, playing an important role in protection from obesity and metabolic syndrome in mice\(^3–5\). Interestingly, all shelterins except RAP1 are essential for life\(^6–8\), owing to the fact that RAP1 is the only shelterin dispensable for telomere protection\(^9,10\).

Telomeres are proposed to be further stabilized by the formation of a protective T-loop larit structure. The single-stranded 3’ overhang loops back and invades double-stranded telomeric DNA in a TRF2-dependent manner\(^11,12\). Thus, the T-loop sequesters the ends of chromosomes and provides a mechanism to prevent the full activation of a DNA damage response typically observed at most types of DNA ends\(^13\).

Importantly, owing in part to the so-called “end replication problem”, telomeres shorten during each cell duplication cycle due to the inability of replicative DNA polymerases to fully replicate the 3’ ends of linear chromosomes\(^14,15\). In particular, the removal of RNA primers, which provide the required 3’OH group for addition of dNTPs by DNA polymerases, renders the newly synthesized DNA strand shorter than the parental template. Thus, chromosomes progressively shorten from both ends upon repeated cell division, a process which in the context of the organism contributes to progressive telomere shortening with aging in all cell types where it has been studied\(^16\). When telomeres reach a critically short length they are detected by the DNA repair systems as DNA damage and elicit cell cycle arrest and cell death responses\(^17\). Thus, telomere shortening underlies the “molecular clock” proposed by Hayflick to explain the limited lifespan of cells in culture, or “Hayflick limit”\(^17,18\).

Telomerase is a DNA reverse transcriptase polymerase (telomerase reverse transcriptase [TERT]) which uses an RNA template (telomerase RNA component [TERC]) for de novo addition of telomeric DNA onto telomeres, thus compensating for the telomere erosion caused by cell divisions\(^19\). Indeed, overexpression of telomerase is sufficient to counteract telomere attrition and to indefinitely extend the replicative lifespan of primary cells in culture in the absence of genomic instability, transforming them into cancerous cells\(^20–22\). However, high telomerase expression is normally restricted to early stages of embryonic development (i.e. the blastocyst stage in mice and humans) and to pluripotent embryonic stem cells\(^23,24\). Thus, adult mammalian tissues including adult stem cell compartments do not express sufficient amounts of telomerase to maintain telomere length throughout organismal lifespan. Consequently, telomere shortening occurs along with physiological aging in humans and mice and this process is proposed to underlie aging and age-associated diseases as well as organismal longevity\(^25,26\).

In addition to the core components TERT and TERC, the telomerase holoenzyme further consists of the accessory dyskerin complex composed of the proteins DKC1, NOP10, NHP2, and GAR1\(^27,28\), which also play essential roles in telomere biology. Holoenzyme assembly is thought to occur in the Cajal bodies\(^29\), and subsequently TCAB1 and TPP1 are required for proper trafficking of telomerase to telomeres. Moreover, the discovery of a long non-coding telomeric repeat-containing RNA, TERRA\(^30,31\), which has been proposed to regulate various aspects of telomere function, adds yet another level of complexity to telomere regulation\(^32,33\). Another crucial issue in telomere stability and maintenance is the replication of telomeric DNA, for which a myriad of proteins are required. Key factors in telomeric DNA replication are the CST complex (comprising the proteins CTC1, STN1, and TEN1)\(^34,35\), which facilitates telomere replication and simultaneously limits telomerase activity. WRN is a helicase with 3’ to 5’ exonuclease activity, which is also required for efficient telomere replication\(^36\) as well as processing of the 3’ telomeric overhang\(^37,38\). The helicase BLM contributes to telomere stability by resolving late replication structures\(^39\), whereas FEN1 and RTEL1 function in Okazaki fragment processing\(^40\) and T-loop disassembly during replication\(^1\), respectively. We recently published an in-depth review on the role of these proteins in telomere replication including the consequences for telomere maintenance if their function is impaired\(^41\).

In this review, we will discuss the role of telomeres in the origin of age-associated diseases and organismal longevity, as well as the potential use of telomerase as a therapeutic target to delay aging and to prevent and treat age-related diseases.

Telomeres as hallmarks of aging and longevity

Aging is a multifactorial process that results in a progressive functional decline at cellular, tissue, and organismal levels. During recent years, a number of molecular pathways have been identified as main molecular causes of aging, including telomere attrition, cellular senescence, genomic instability, stem cell exhaustion, mitochondrial dysfunction, and epigenetic alterations, among others\(^26\). Interestingly, telomere attrition is considered a primary cause of aging, as it can trigger all the above-mentioned hallmarks of aging, although the degree to which it is a principal cause of aging is under active investigation\(^26\). Critical telomere shortening elicits the induction of cellular senescence or the permanent inability of cells to further divide, which in turn has been proposed to be at the origin of different disease states\(^37,41\). In addition, telomere attrition in the stem cell compartments results in the exhaustion of their tissue- and self-renewal capacity, thus also leading to age-related pathologies\(^42,43\). Indeed, when this telomere exhaustion occurs prematurely owing to germline mutations in telomere maintenance genes (i.e. telomerase or shelterin genes), this triggers a premature loss of the renewal capacity of tissues leading to the so-called telomeropathies or telomere syndromes, including aplastic anemia and pulmonary fibrosis, among others\(^44–49\). Loss of DNA...
damage checkpoints can also allow the propagation of cells with short/damaged telomeres, thus leading to chromosome end-to-end fusions and genomic instability, as well as age-associated diseases like cancer58,59. A link between dysfunctional telomeres and mitochondrial compromise has been also proposed through transcrip-
tional repression of the PGC-1\textalpha{} and PGC-1\beta{} genes by short
telomeres, thus linking dysfunctional telomeres to mitochondrial aging60. Finally, short telomeres can trigger epigenetic changes at
telomeric as well as subtelomeric chromatin61. In this regard, epi-
genetic regulation of telomeres has been described in processes that
involve de-differentiation and loss of cellular identity such as during
tumorigenesis62, as well as during the induction of pluripotency63. In
particular, loss of heterochromatic marks at telomeres results in
telomere elongation and increased telomere recombination64.

Of note, in addition to the persistent DNA damage response elicited by
critically short telomeres, it recently became evident that a large
proportion of DNA damage in stress-induced senescence resides in
telomeres. Importantly, this DNA damage is independent of tel-
omere length and accumulates with aging in primates and mice,
suggesting that stress-induced and telomere length-independent
senescence may contribute to the aging process too57,65,66.

In addition to being considered a primary molecular cause of
aging, telomere shortening with time has been proposed to be a
biomarker of biological aging, with a potential prognostic value for
many different age-associated diseases, including cardiovas-
cular failure67,68. Interestingly, telomere length has also been pro-
posed as a marker of longevity. A study longitudinally following
telomere length throughout the lifespan of individual zebra finches
demonstrated that telomere length at day 25 after birth is a strong
predictor of individual lifespan in this species68. In mice, a similar
longitudinal follow up of telomere length throughout lifespan showed
the rate of increase of short telomeres with time but not
average telomere length or the rate of telomere shortening was pre-
dictive of individual lifespan69. This study also showed for the first
time that laboratory wild-type mice shortened telomeres at a pace
that was 100-fold faster than humans, thus providing a potential
explanation for shorter lifespans in mice (2–3 years) compared
to humans, in spite of their long telomere length at birth (~50–150 kb
in mice versus ~15–20 kb in humans)67,69. A similar scenario was
found in dogs, where telomere shortening has been described to be
10-fold faster than in humans69. These findings suggest that it
is the ability of different species to maintain telomeres rather than
average telomere length per se that may be determinant of species
longevity. This idea is further supported by longitudinal studies in
free-living birds. In particular, in Seychelles warblers, telomeres
shorten throughout life and higher rates of telomere shortening
predict mortality70. Similarly, survival in jackdaws can be pre-
picted by nesting telomere shortening but not by absolute telomere
length71.

Additional and independent evidence that the ability to maintain
telomeres may determine mouse longevity came from the descrip-
tion of an age-specific metabolic signature predictive of chrono-
logical age in wild-type mice72. In particular, when this signature
was used to predict the age of either telomerase-deficient or TERT-
overexpressing mice, it predicted older or younger ages than their
chronological age, respectively, in agreement with shorter telom-
eres and shorter lifespan in the telomerase-deficient mice, and
longer telomeres and extended lifespan in the TERT-overexpressing
mice72, thus suggesting that telomere length is a determinant of
aging in wild-type mice.

In humans, a large number of cross sectional epidemiological
studies confirmed telomere shortening with aging in humans73,74.
Recently published data from the GERA cohort (Genetic Epidemi-
ology Research on Adult Health and Aging), which comprises more
than 100,000 individuals, further confirmed this correlation and
also showed that telomere length correlates positively with survival
in subjects older than 75, i.e. longer telomeres provide more years of
life74. This is in agreement with a previous report showing that
telomere length positively correlates with better median survival in
individuals who are 60 years of age or older75. However, contra-
dictory reports exist which do not support the correlation between
average telomere length and the prediction of remaining years of life
in the old and oldest66,76. In this regard, lessons from other species
(mice, birds) show the importance of determining not only average
telomere length but also longitudinal changes in telomere length as
well as changes in the abundance of short telomeres. Thus, future
epidemiological studies should take individual telomeres and their
change over time into account (i.e. the rate of increase of the frac-
tion of short telomeres). In this regard, methods that can quantify
the presence of short telomeres, like the high-throughput quantita-
tive telomere fluorescence in situ hybridization (FISH) technique77
or single telomere length analysis (STELA)8 will be important for
establishing telomere shortening as a biomarker of human aging.

Intrinsic and environmental instigators of telomere length

As mentioned above, there are differences in the pace of telomere
shortening across species, which indeed may contribute to explain-
ing their different longevitys, at least in part. The average telomere
shortening in human blood cells occurs at a rate of 31–72 base
pairs per year78,79 while mouse telomeres shorten around a hundred
times faster than that80. This indicates that, in addition to the intrin-
sic end replication problem, there are other factors contributing to
telomere attrition. In particular, oxidative damage may severely
impact on telomere length. Cells exposed to oxidative stress condi-
tions (e.g. H\textsubscript{2}O\textsubscript{2}, chronic hyperoxia) display accelerated telomere
shortening and reduced replicative lifespans, whereas antioxidant
treatment has the opposite effect81. In humans, the choice of life-
style can influence telomere shortening. As an example, smoking,
an unhealthy diet (e.g. high cholesterol, alcohol intake), or obesity
might lead to telomere shortening by provoking tissue inflamma-
tion and oxidative stress82–87. Moreover, accelerated telomere
shortening in leukocytes has been associated with psychological stress.
In particular, patients with depression disorders have shorter telom-
eres compared to healthy individuals88, and this telomere erosion
is found in all lymphocyte subpopulations of the adaptive immune
system89. Stress provoked by physical abuse of children has been
also associated with telomere shortening90. Furthermore, there is a
wealth of studies investigating telomere length in major depressive
disorder (MDD), a severe illness which shows signs of premature
aging91,92. In particular, it has been described that telomere length in
MDD subjects corresponds to a 10-year increase in biological
age compared to healthy subjects. In line with this, increased abundance of short telomeres in patients with bipolar II disorder has also been described to correspond to a 13-year older biological age, again in agreement with increased risk for developing different diseases in these patients. Interestingly, shorter telomeres are also associated with cognitive impairment in the elderly.

In contrast to the detrimental factors causing accelerated telomere shortening, certain life habits (e.g. a diet rich in omega-3 fatty acids), as well as physical activity, exercise, and fitness, have been proposed to reduce telomere erosion and thus slow down the pace of aging.

In addition to these various intrinsic and environmental factors, telomere length is also dictated by a genetic component. Earlier twin and family studies and a recent meta-analysis comprising nearly 20,000 subjects demonstrate that telomere length is highly heritable. Whether the inheritance of telomere length correlates more strongly with paternal or maternal telomere length, however, is still debated. Interestingly, in another twin study Christiansen and colleagues reported that the perceived age in twins older than 70 years of age is a robust biomarker of aging which strongly correlates with telomere length. Moreover, within twin pairs, the twin with greater telomere length tends to look younger and live longer.

Genetic models to understand the causal role of telomeres in disease and longevity

Firm experimental demonstration that critical telomere shortening is causative of aging was first achieved by generating mice deficient for telomerase. Mice deficient for TERC have progressively shorter telomeres over generations, leading to chromosome instability, developmental defects, premature aging phenotypes, and ultimately mouse infertility and premature death. These mice show a decreased median and maximum lifespan already at the first generation, and this decreased longevity and associated aging pathologies are anticipated with each mouse generation, thus demonstrating that telomere length in mice is causal of aging and longevity. Importantly, restoration of TERC expression in mice with inherited critically short telomeres is sufficient to prevent the phenotypes associated with short telomeres in these mice, including aplastic anemia, intestinal atrophy, and infertility, among others. In agreement with these pioneer studies, genetic ablation of TERT was shown to have similar consequences on organismal aging and lifespan. Furthermore, TERT reconstitution in late generation TERT-deficient mice also led to telomere elongation, lower DNA damage load, and reversal of degenerative phenotypes in these mice. In line with these findings, lack of telomerase in lower vertebrates such as the zebrafish also causes premature aging which can be rescued by either telomerase restoration or inhibition of p53, which signals telomere damage. Together, these findings demonstrate that short telomeres are causative of aging and that premature aging specifically induced by telomerase deficiency and short telomeres can be rescued by telomerase re-expression.

In line with mouse studies, a number of human syndromes were later described to be caused by germ line mutations in telomerase and shelterin genes, the so-called telomere syndromes. As in the telomerase-deficient mouse model, the diseases associated with telomerase mutations are anticipated with increasing generations and involve a loss of the ability of tissues to regenerate, resulting in skin abnormalities, aplastic anemia, or pulmonary fibrosis. These analogies between humans and mice highlight that telomere length as a genetic determinant of disease and longevity is a molecular mechanism conserved in these species.

However, definitive genetic demonstration that telomere length is also causative of physiological aging in normal individuals first came from telomerase overexpression studies in mice. In particular, mice with increased transgenic telomerase expression throughout their lifespans were able to maintain longer telomeres with aging, showed decreased molecular (i.e. lower DNA damage) and physiological biomarkers of aging, showed a delayed appearance of age-related pathologies (osteoporosis, metabolic decline, etc.), and showed a significant increase in organismal longevity. In particular, transgenic TERT overexpression in mice engineered to be cancer resistant resulted in decreased incidence of aging-related pathologies and a striking 40% extension of median survival compared to wild-type mice. This study demonstrated for the first time in any organism the anti-aging activity of telomerase. Importantly, these findings led to the idea that potential therapeutic strategies based on transiently increased telomerase expression could also delay age-associated pathologies and increase longevity. This was first achieved by delivering TERT using non-integrative gene therapy vectors (adeno-associated vectors [AAVs]) into middle-aged and old mice, which resulted in transiently increased TERT expression in the majority of mouse tissues. Importantly, a single treatment with these vectors resulted in elongated telomeres in a range of organs, delayed age-associated pathologies, and significantly extended median and maximal lifespan in both age groups. Moreover, these mice did not show increased cancer; instead, as seen in other age-related conditions, cancer was also delayed. Thus telomere-based gene therapies using non-integrative vectors may represent a new therapeutic strategy to transiently activate TERT for the prevention or treatment of many different age-related pathologies (see below).

Telomeres and Telomerase as therapeutic targets

A substantial number of companies are now aiming to harness the knowledge that has been generated, unveiling the molecular mechanisms of aging in order to develop a new class of drugs to prevent and treat the major age-related diseases. In this regard, telomerase overexpression studies in mice have been proof of principle that just modifying a single hallmark of aging, i.e. telomere shortening, was sufficient to delay not one but many different age-associated pathologies in mice, including cognitive decline. Indeed, the use of telomerase activation in delaying aging-associated conditions has spurred the interest of commercial enterprises. For instance, the low-potency telomerase activator TA-65 (a bio-active compound isolated from the herb Astragalus membranaceus) has been shown to lead to a mild increase in telomere length in mice, zebra finches, and humans, and to improve several aging-related parameters in mice and humans, although no increase in longevity has been reported in longitudinal mouse studies. On the other hand, other natural compounds like sex hormones have been found to activate TERT at the transcriptional level. In this
In regard, androgen therapy has been applied as a first-line treatment in aplastic anemia for decades with mixed success and without a clear understanding of the mechanism that underlies remission in some patients but not in others123,124. A recent study in mice which develop full-blown aplastic anemia provoked by short telomeres showed that androgen therapy rescues telomere attrition and subsequent death from aplastic anemia122, indicating that telomerase activation may indeed be a treatment option for diseases associated with flawed telomere maintenance (i.e. telomeropathies or telomere syndromes). However, potential off-target effects of compounds that activate TERT at a transcriptional level should be a concern. In particular, TA-65 has been shown to activate TERT through activation of mitogenic pathways that lead to the activation of the oncogene c-myc127,128 and thus may drive cancer. Interestingly, such off-target effects may be circumvented through direct delivery of TERT, such as by means of systemic gene therapy using non-integrative AAV vectors, which showed a significant delay of age-related pathologies in mice and increased longevity115. A recent study using fibroblasts in vitro also proposed delivery of the TERT mRNA as a way to activate telomerase126. However, it should be mentioned that strategies for telomerase activation, indirect or direct, have raised safety concerns due to the close correlation of most cancers and constitutive reactivation of endogenous telomerase. This highlights that, in addition to proof-of-concept studies in mice, the development of safe strategies for transient and controllable telomerase activation in humans should be a future goal.

In this regard, TERT gene therapy with AAVs is particularly attractive for TERT activation, since the non-integrative and replication-incompetent properties of AAVs allow for cell division-associated telomere elongation and subsequent loss of TERT expression as cells divide, thus restricting TERT expression to a few cell divisions. Thus, this strategy assures a transient and relatively genome-safe TERT activation. In contrast, the use of TERT mRNA currently lacks appropriate systems for in vivo delivery, and thus its use may be restricted to ex vivo applications.

It is likely that the first clinical use of a TERT-based therapy, such as the TERT gene therapy approach developed by us, will be for the treatment of the human telomere syndromes, including aplastic anemia and pulmonary fibrosis. However, this requires the development of appropriate preclinical models and the subsequent clinical trials in humans. In this regard, we have recently generated two mouse models which recapitulate the clinical features of aplastic anemia127 and pulmonary fibrosis128. The disease in both models is provoked by short and dysfunctional telomeres and thus these models provide a platform for further testing of TERT-based treatment strategies for the telomere syndromes.

Given that physiological aging is provoked, at least in part, by telomere shortening, a TERT gene therapy may be used not only for the prevention and treatment of telomere syndromes but also for the treatment of multiple age-related diseases. In this regard, short

Figure 1. Telomeres in aging and disease. Telomere shortening is a life-long process that is influenced by a number of intrinsic and environmental factors that either accelerate or slow down natural telomere attrition, which causes aging and the emergence of age-related diseases. The identification of telomere shortening as a driver of molecular aging has triggered the development of telomerase-based strategies to (re)elongate telomeres and thus to delay aging and associated disease. Abbreviations: AAV, adeno-associated vectors; TERT, telomerase reverse transcriptase.
telomeres have been extensively associated with a higher risk for cardiovascular disease\(^{41,129,130}\). In support of a potential use of TERT activation in the treatment of age-related diseases, we demonstrated that TERT gene therapy can efficiently rescue mouse survival and heart scarring in a preclinical mouse model for heart failure upon induction of acute myocardial infarction\(^{115}\).

Collectively, experiments in cell and animal models provide proof of concept for the feasibility of telomerase activation approaches to counteract telomere shortening and its consequences (Figure 1). In particular, the successful use of telomerase gene therapy in animal models of aging and short telomere-related diseases paves the way for the development of therapeutic telomerase treatments in human aging and associated disease.

Competing interests
Maria A. Blasco is co-founder of Life Length, a biotechnology company that commercializes measurement of telomere length for different applications.

Grant information
The author(s) declared that no grants were involved in supporting this work.

References

Bischof C, Petersen HC, Graakjaer J, et al.: No association between telomere...

Open Peer Review

Current Peer Review Status: ✔️ ✔️ ✔️ ✔️

Version 1

Reviewer Report 21 January 2016

https://doi.org/10.5256/f1000research.7558.r12015

© 2016 Johnson F. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

F. Bradley Johnson
Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA

Until it is demonstrated that enhanced telomere maintenance delays or reverses age-related pathologies in humans, it will not be know for certain to what extent telomere dysfunction contributes to natural human aging. Nonetheless, the current evidence, as reviewed by Bar and Blasco, does suggest that targeting telomeres will prove to be helpful for the amelioration of age-related diseases.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 21 January 2016

https://doi.org/10.5256/f1000research.7558.r12014

© 2016 Comai L. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Lucio Comai
Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA

Competing Interests: No competing interests were disclosed.
I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 21 January 2016

https://doi.org/10.5256/f1000research.7558.r12013

© 2016 d’Adda di Fagagna F. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fabrizio d’Adda di Fagagna
IFOM - FIRC Institute of Molecular Oncology Foundation, Milan, Italy

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 21 January 2016

https://doi.org/10.5256/f1000research.7558.r12012

© 2016 Shay J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Jerry W Shay
Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com