Phytoglobin: a novel nomenclature for plant globins accepted by the globin community at the 2014 XVIII conference on Oxygen-Binding and Sensing Proteins [version 1; peer review: 2 approved]

Robert Hill¹, Mark Hargrove², Raúl Arredondo-Peter³

¹Department of Plant Science, University of Manitoba, Winnipeg, Canada
²Molecular Biology Building, Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, USA
³Laboratorio de Biofísica y Biología Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico

Abstract
Hemoglobin (Hb) is a heme-containing protein found in the red blood cells of vertebrates. For many years, the only known Hb-like molecule in plants was leghemoglobin (Lb). The discovery that other Hb-like proteins existed in plants led to the term “nonsymbiotic Hbs (nsHbs)” to differentiate them from the Lbs. While this terminology was adequate in the early stages of research on the protein, the complexity of the research in this area necessitates a change in the definition of these proteins to delineate them from red blood cell Hb. At the 2014 XVIII Conference on Oxygen-Binding and Sensing Proteins, the group devoted to the study of heme-containing proteins, this issue was discussed and a consensus was reached on a proposed name change. We propose Phytoglobin (Phytogb) as a logical, descriptive name to describe a heme-containing (Hb-like) protein found in plants. It will be readily recognized by the research community without a prolonged explanation of the origin of the term. The classification system that has been established can essentially remain unchanged substituting Phytogb in place of nsHb. Here, we present a guide to the new nomenclature, with reference to the existing terminology and a phylogenetic scheme, placing the known Phytogbs in the new nomenclature.

Keywords
Algae, angiosperms, bryophytes, gymnosperms, legumes, nonsymbiotic, truncated
This article is included in the Oxygen-binding and sensing proteins collection.

This article is included in the Iowa State University collection.

Corresponding author: Raúl Arredondo-Peter (ra@uaem.mx)

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2016 Hill R et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Hill R, Hargrove M and Arredondo-Peter R. Phytoglobin: a novel nomenclature for plant globins accepted by the globin community at the 2014 XVIII conference on Oxygen-Binding and Sensing Proteins [version 1; peer review: 2 approved] F1000Research 2016, 5:212 https://doi.org/10.12688/f1000research.8133.1

First published: 24 Feb 2016, 5:212 https://doi.org/10.12688/f1000research.8133.1
Hemoglobin (Hb) is a heme-containing protein found in the red blood cells of vertebrates. Hemoglobin-like proteins are also found in other tissues of vertebrates where they are given tissue-specific names that help to identify their locations and distinguish them from red blood cell Hb. For many years, the only known Hb-like molecule in plants was leghemoglobin (Lb), a protein induced as a result of the symbiotic relationship between legume plants and nitrogen-fixing bacteria. The discovery that other Hb-like proteins existed in plants not capable of symbiotic relationships led to the term ‘nonsymbiotic Hbs (nsHbs)’ to differentiate them from the Lbs. While this terminology was adequate in the early stages of research on the protein, the complexity of the research in this area necessitates a change in the definition of these proteins to delineate them from red blood cell Hb, in keeping with the terminology for other Hb-like proteins, such as myoglobin in muscle, neuroglobin in neuron tissue and cytoglobin in vertebrate cell cytoplasm. In 2001, Hunt et al. classified plant Hbs as globin (GLB1, GLB2, GLB3 and GLBS) corresponding to undetermined (mostly liverwort and moss) nsHbs, angiosperm nsHbs class/type 1 and nsHbs class/type 2, truncated Hbs and symbiotic Hbs (which included Lbs), respectively. However, an epithet for plant Hbs was absent in this nomenclature and distinctive characteristics for each category were not fully defined resulting in an incomplete classification system.

At the 2014 XVIII Conference on Oxygen-Binding and Sensing Proteins, the group devoted to the study of heme-containing proteins, the above issue was discussed and a consensus was reached on a proposed name change. Phytoglobin (phyto, plant; globin, heme-containing protein folding structurally similar to the sperm whale myoglobin structure whose heme-Fe is invariably coordinated at the proximal site by His F8), abbreviated as Phytopg, was proposed as a logical, descriptive name to describe a heme-containing (Hb-like) protein found in plants. It will be readily recognized by the research community without a prolonged explanation of the origin of the term, as is the case for ‘nonsymbiotic hemoglobin’. The classification system that has been established can essentially remain unchanged substituting Phytopg in place of nsHb. A guide to the new nomenclature, with reference to the existing terminology, is given in Table 1. A more detailed phylogenetic scheme, placing the known Phytopgs in the new nomenclature, is shown in Figure 1.

Table 1. System and characteristics of the accepted nomenclature for plant (algae + land plants) Phytopgbins (Phytoglobin).

<table>
<thead>
<tr>
<th>Former plant globin name and abbreviation (in parenthesis)</th>
<th>New nomenclature</th>
<th>Plant origin</th>
<th>Distinctive characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonsymbiotic hemoglobin (nsHb)</td>
<td>Phytopg0</td>
<td>Algae+bryophytes+gymnosperms</td>
<td>Heme-Fe either penta- or hexacoordinate. Moderate to high affinity for O₂. Localized in any plant organ.</td>
</tr>
<tr>
<td>Class/type 1 nonsymbiotic hemoglobin (nsHb-1)</td>
<td>Phytopg1</td>
<td>Angiosperms</td>
<td>Heme-Fe predominantly hexacoordinated by a distal amino acid. Extremely high affinity for O₂ mostly due to a very low O₂-dissociation rate constant (k₉). Localized in any plant organ.</td>
</tr>
<tr>
<td>Class/type 2 nonsymbiotic hemoglobin (nsHb-2)</td>
<td>Phytopg2</td>
<td>Angiosperms</td>
<td>Heme-Fe predominantly pentacoordinated. Moderate to high affinity for O₂. Localized in any plant organ.</td>
</tr>
<tr>
<td>Symbiotic hemoglobin (symHb)</td>
<td>SymPhytopg</td>
<td>Non-legume N₂-fixing plants</td>
<td>Heme-Fe predominantly pentacoordinated. Moderate to high affinity for O₂. Specifically localized in N₂-fixing nodules of actinorhizal plants or any other non-legume land plant</td>
</tr>
<tr>
<td>Leghemoglobin (Lb)</td>
<td>Lb</td>
<td>N₂-fixing legumes</td>
<td>Heme-Fe predominantly pentacoordinated. Moderate to high affinity for O₂. Specifically localized in legume N₂-fixing nodules.</td>
</tr>
<tr>
<td>Class/type 3 nonsymbiotic hemoglobin/Truncated hemoglobin (tHb)</td>
<td>Phytopg3</td>
<td>Algae+land plants</td>
<td>Globin-domain amino acid sequence and structure (i.e. folding into the 2/2-fold) similar to those of bacterial tHbs. Heme-Fe either penta- or hexacoordinate. Moderate to high affinity for O₂. Localized in any plant organ.</td>
</tr>
</tbody>
</table>

aNumerical classification corresponds to that previously proposed by Hunt et al.

*bHeme-Fe coordination and affinity for O₂ correspond to those from moss Phytopg0, barley, rice and Arabidopsis Phytopg1, Arabidopsis Phytopg2, Casuarina SymPhytopg, soybean Lb and Arabidopsis Phytopg3 representative of Phytopg0, Phytopg1, Phytopg2, SymPhytopg, Lb and Phytopg3, respectively.

cAmino acid sequence of algal globins analyzed so far is similar to that of land plant Phytopg0 and Phytopg3, hence algal globins can be classified as Phytopg0 or Phytopg3, respectively.

dSome SymPhytopgs and Lbs (such as the Parasponia and Casuarina globins, respectively) are intermediate between Phytopg1 and Phytopg2 and SymPhytopgs and Lbs because they exhibit amino acid sequence similarity to Phytopg1 and Phytopg2 (Figure 1) and are localized in non-legume actinorhizal nodules and apparently play a role in symbiotic N₂-fixation.
Figure 1. Phylogenetic representation of the novel nomenclature for land plant Phytogbs. Note that Parasponia, Casuarina, Alnus and Myrica SymPhytogbs are intermediate between SymPhytogbs and Phytogbs1 and Phytogbs2 (see Table 1 for explanation). Figure modified from Garrocho-Villegas et al.23 (reprinted with permission).
Also, we propose that acronym for the species-specific Phytogbs corresponds to the first three binomial (i.e. genus and species) letters followed by the Phytogb type and phytogb number of copy. For example, the acronym for rice (Oryza sativa) Phytogb1.1 (see Table 1) corresponds to OrysaPhytogb1.1.

Author contributions
RDH conceived the proposal. RDH, MSH and RAP discussed and proposed the novel nomenclature, prepared the first draft of the manuscript, revised the draft manuscript and have agreed to the final content.

Competing interests
No competing interests were disclosed.

Grant information
The author(s) declared that no grants were involved in supporting this work.

Acknowledgements
Authors wish to express their gratitude to Itzel Rojas Sánchez, Gisselle A. Fuentes and Gustavo Rodríguez-Alonso for evaluating the Phytogbs nomenclature presented here and providing useful comments.

References
Open Peer Review

Current Peer Review Status: ✔️ ✔️

Version 1

Reviewer Report 11 March 2016

https://doi.org/10.5256/f1000research.8749.r12637

© 2016 Fagerstedt K. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Kurt V Fagerstedt
Department of Biosciences, University of Helsinki, Helsinki, Finland

The change in the hemoglobin/phytoglobin nomenclature presented in Hill et al. paper is timely and well supported by the hemoglobin and phytoglobin community. The change has been discussed in many conferences including the 2014 XVIII Conference on Oxygen-Binding and Sensing Proteins mentioned in the paper. The system presented in Table 1 is logical and supported by the protein structures and by the phylogenetic tree presented in Figure 2. The only and very slight problem is in the positioning of symbiotic hemoglobins present in non-legume nitrogen fixing plants, which have amino acid sequence similarities with both Phytogbs1 and 2. However, their positioning as a separate group in Table 1 is supported by the fact that they are only found in the nodules of actinorhizal plants.

Dr. Topunov has provided a historical perspective on the evolution of the name phytoglobin in his referee report, which clearly shows both the need for the term and no scientific discrepancy in its use. I agree wholeheartedly.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 11 Mar 2016

Raul Arredondo-Peter, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico

We thank Dr. Fagerstedt for evaluating this article and his comments.

Competing Interests: No competing interests were disclosed.
Alexey F. Topunov
Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation

The reviewing article is dedicated to very interesting and actual issue. After proposition of the term “leghemoglobin” (Lb) by Virtanen and Laine (1946) it was used only for hemoglobins (Hb) of the leguminous plants because it was the only one group of plants known to contain Hb. However after observing of Hbs in non-leguminous plants (Appleby et al. 1983, Tjepkema 1983) the ironic situation originated. “Non-leguminous” hemoglobins are evolutionary closer to leghemoglobins, but according to their denominations they looked to be similar to animal ones. Even hemoglobin of cyanobacteria received its own specific denomination “cyanoglobin” (Hill et al 1996) although it was initially illogically named “Myoglobin in a cyanobacterium” (Potts et al 1992), but plant Hbs were poor relatives in this family. The necessity of new terminology for plant hemoglobins appeared and such thoughts apparented and were discussed.

The proposition of the new terminology “phytoglobin” (Phb) was already once stated. It was made in Bach Institute of Biochemistry (Moscow, Russia) in the book by Kretovich and this term was even used in the published article (Topunov 1994). This idea was not further developed at that time and in the next paper (Topunov 1995) the old word “leghemoglobin” was employed again but using of the “phytoglobin” terminology in the article was referred.

In conclusion: it is the right desire to revive this terminology for plant hemoglobins and it has to be promoted and continued. There is the one difference between these two propositions of the “phytoglobin” term. In 1990s it was used as the general terminology for all plant hemoglobins (from both leguminous and non-leguminous plants) so “leghemoglobin” term could be excluded. Now it is proposed for plant hemoglobins aside from Lb, and it looks more pragmatic because scientists are accustomed to the “leghemoglobin” term and there is no need to exclude it from the scientific practice.

References

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 08 Mar 2016

Raul Arredondo-Peter, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico

We thank Dr. Topunov for his evaluation and providing information that complements the contents of this article.

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com